Ref No:

SKIT, BANGALORE

Academic Year 2019-20

Program:	B E – Information Science & Engineering
Semester :	5
Course Code:	17CS53
Course Title:	Database Management System
Credit / L-T-P:	4 / 4-0-0
Total Contact Hours:	50
Course Plan Author:	Veena M Naik

Academic Evaluation and Monitoring Cell

No. 29, Chimney hills, Hesaraghatta Road, Chikkabanavara BANGALORE-5600990, KARNATAKA , INDIA Phone / Fax :+91-08023721315/23721477 www.skit.org.in

Table of Contents

A. COURSE INFORMATION	3
1. Course Overview	
2. Course Content	
3. Course Material	4
4. Course Prerequisites	6
5. Content for Placement, Profession, HE and GATE	6
B. OBE PARAMETERS	6
1. Course Outcomes	6
2. Course Applications	7
3. Mapping And Justification	7
4. Articulation Matrix	10
5. Curricular Gap and Content	
6. Content Beyond Syllabus	11
C. COURSE ASSESSMENT	11
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	12
Module - 1	12
Module – 2	12
E1. CIA EXAM – 1	13
a. Model Question Paper - 1	-
b. Assignment -1	-
D2. TEACHING PLAN - 2	15
Module – 3	-
Module – 4	
E2. CIA EXAM – 2	17
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	18
Module – 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	-
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	
•	

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	B.E	Program:	IS
Year / Semester :	3 rd / V	Academic Year:	2019-20
Course Title:	Database Management System	Course Code:	17CS53
Credit / L-T-P:	4-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	Veena M Naik	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA target:60%	SEE Target:	72%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content \checkmark Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachi	Identified Module	Blooms
ule		ng Hours	Concepts	Learning Levels
1	Introduction to Databases: Introduction, Characteristics of database approach, Advantages of using the DBMS approach, History of database applications. Overview of Database Languages and Architectures: Data Models, Schemas and Instances. Three schema architecture and data independence, database languages, and interfaces, The Database System environment.		Storage of data	L2 Understand
	Conceptual Data Modelling using Entities and Relationships: Entity types, Entity sets, attributes, roles, and structural constraints, Weak entity types, ER diagrams, examples, Specialization and Generalization.		Entity relationship	L3 Apply
2	Relational Model: Relational Model Concepts, Relational Model Constraints and relational database schemas, Update operations, transactions, and dealing with constraint violations. Relational Algebra: Unary and Binary relational operations, additional relational operations (aggregate, grouping, etc.) Examples of Queries in relational algebra. Mapping Conceptual Design into a Logical Design: Relational Database Design using ER-to-Relational mapping	- U	Relational Algebra	L3 Apply
	SQL:SQL data definition and data types, specifying constraints in SQL, retrieval queries in SQL, INSERT, DELETE, and UPDATE statements in SQL, Additional features of SQL.	5	Query Language	L3 Apply
3	SQL:Advances Queries: More complex SQL retrieval queries, Specifying constraints as assertions and action triggers, Views in SQL, Schema change statements in SQL. Database Application Development: Accessing databases from applications,		SQL	L3 Apply
	An introduction to JDBC, JDBC classes and interfaces, SQLJ, Stored procedures, Case study: The internet Bookshop. Internet Applications:The three-Tier application architecture, The presentation layer, The Middle Tier		Data connectivity	L4 Analyze
4	Database Design Theory – Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional	5	Database design	L3 Apply

	Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms,Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form,Join Dependencies and Fifth NormalForm Normalization Algorithms: Inference Rules, Equivalence, and Minimal Cover, Properties of Relational Decompositions,	5	Normalization	L4 Analyze
	Algorithms for Relational Database Schema Design, Nulls, Dangling tuples, and alternate Relational Designs, Further discussion of Multivalued dependencies and 4NF, Other dependencies and Normal Forms			
5	Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.	5	Transaction process	L5 Evaluate
	Concurrency Control in Databases: Two-phase locking techniques for Concurrency control, Concurrency control based on Timestamp ordering, Multiversion Concurrency control techniques, Validation Concurrency control techniques, Granularity of Data items and Multiple Granularity Locking. Introduction to Database Recovery Protocols: Recovery Concepts, NO-UNDO/REDO recovery based on Deferred update, Recovery techniques based on immediate update, Shadow paging, Database backup and recovery from catastrophic failure.	5	Data transaction and recovery methods	L5 Evaluate
-	Total	50	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

5.1050			5 010.
Modul	Details	Chapters	Availability
es		in book	
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1,2,4,5	Database systems Models, Languages, Design and Application	1,2,3,4, 5,	In Lib / In Dept
	Programming,	7,8,14,15,	
	RamezElmasri and Shamkant B. Navathe, 7th Edition, 2017, Pearson.	20,21,22	
3	Database management systems, Ramakrishnan, and Gehrke, 3 rd	6,7	
	Edition, 2014, McGraw Hill		
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1,2,4,5	Silberschatz Korth and Sudharshan, Database System Concepts, 6 th	1,2,3	In Lib
	Edition, Mc-GrawHill, 2013.		
3	Coronel, Morris, and Rob, Database Principles Fundamentals of Design,	7,8	In Lib
	Implementation and Management, Cengage Learning 2012.		
С	Concept Videos or Simulation for Understanding	-	-
1	https://www.google.com/url?		
	sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKE		
	wie5peX457lAhWZ7HMBHaPLDiYQtwIwAXoECAsQAQ&url=https%3A		
	<u>%2F%2Fwww.youtube.com%2Fwatch%3Fv</u>		
	%3D6u2zsJOJ_GE&usg=AOvVaw1mGloytvVe1-tVBKm2otnE		
2	https://www.google.com/url?		
	<u>sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKE</u>		
	wiMrord5J7lAhUI7HMBHTe4Bw0QtwIwAHoECAkQAQ&url=https%3A%2F		
	<u>%2Fwww.youtube.com%2Fwatch%3Fv</u>		

	%3D6uX_nXzeVDY&usg=AOvVaw2MTBMQT7AAv6rd8BaSvJls		
3	https://www.google.com/url?		
5	sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKE		
	wjoy6So5p7lAhW6ILcAHb-jAb0QtwIwAHoECAkQAQ&url=https%3A%2F		
	%2Fwww.youtube.com%2Fwatch%3Fv		
	%3DgGGHjYbQMvw&usg=AOvVaw2hlC1m6LNwiWkGD8xoOdXj		
4	https://www.google.com/url?		
	<u>sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKE</u>		
	wiNqPiz5p7lAhUymeYKHbVmDDgQwqsBMAB6BAgHEAQ&url=https		
	%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv		
	%3DHXV3zeQKqGY&usq=AOvVaw28qyHvdQya8x1qV53cnV7s		
5	https://www.google.com/url?		
5	sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKE		
	wjNs5DP5p7lAhVL6XMBHdHxBsAQtwlwAXoECAYQAQ&url=https%3A		
	%2F%2Fwww.youtube.com%2Fwatch%3Fv		
	%3DFIVDmEljBZA&usg=AOvVawodKswlo8R2TbpCzmz1lZmt		
0			
6	https://www.google.com/url?		
	sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKE		
	wjoiPnr5p7lAhW273MBHScEC-MQtwIwAHoECAoQAQ&url=https%3A		
	<u>%2F%2Fwww.youtube.com%2Fwatch%3Fv</u>		
	<u>%3D17jcw35uid0&usg=AOvVaw3iYdKx9i3ImDW0pLP6qjMB</u>		
7	https://www.google.com/url?		
	sa=t&rct=j&g=&esrc=s&source=web&cd=21&cad=rja&uact=8&ved=2ahUKE		
	wjKuajq6J7lAhUHKY8KHULABqkQFjAUegQIBhAB&url=https%3A%2F		
	%2Fnptel.ac.in%2Fcourses		
	%2F106106093%2F&usg=AOvVaw3FDA_xn_nNeOq2a5-XfKYy		
8	https://www.google.com/url?		
0	sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKE		
	wi8vvWk6Z7lAhVLLo8KHfELDLUQtwIwAHoECAkQAQ&url=https%3A		
	%2F%2Fwww.youtube.com%2Fwatch%3Fv		
	%3DoylHRgBDfNc&usg=A0vVaw2QjqEcHlRFAZFqLVKE423u		
9	https://www.google.com/url?		
	<u>sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKE</u>		
	wj4-ozJ6Z7lAhUEinAKHUTUAmMQtwIwAHoECAkQAQ&url=https%3A		
	%2F%2Fwww.youtube.com%2Fwatch%3Fv		
	%3D5ammL5KU4mo&usg=A0vVaw3a214t5HGHnuK05pi83m2F		
10	https://www.google.com/url?		
	sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKE		
	wjV0-3g6Z7lAhXJP48KHa2tBa8QtwIwAHoECAkQAQ&url=https%3A%2F		
	%2Fwww.youtube.com%2Fwatch%3Fv		
	%3Di7LNUi07kvw&usg=AOvVaw1W5vlt4Hvxrbv-1m5vYlhU		
	<u>///LNOI0/KVw&usg=AOvv&w1w5vit4HvXiDv=1115v+1110</u>		
~	Coffiniana Taola fan Daoinn		
D	Software Tools for Design		
	Oracle 11g		
E	Recent Developments for Research	-	-
1	Data space and developments of data space environment		
2	Database systems: a practical approach to design, implementation, and		
	management		
F	Others (Web, Video, Simulation, Notes etc.)		_
		-	-
1	https://nptel.ac.in/courses/106105175/		
2	https://www.google.com/url?		
	sa=t&rct=j&q=&esrc=s&source=web&cd=21&cad=rja&uact=8&ved=2ah		
	UKEwjx3oil6p7lAhVLMo8KHeFGBPYQFjAUegQlBRAB&url=https%3A		
	%2F%2Fcosmolearning.org%2Fvideo-lectures%2Fintroduction-sql		
	%2F&usg=AOvVaw0FDNdtlkJHfTTAI1z1w088		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Juac	students must have teamt the following Courses / Topics with described Content.					
Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level
1	,		Usage of Data Intensive applicatior in real time	n 5	Topic discussed	L2
2	,	management	Analyzing Data, Data storage and data access requirement of any organization	-	Topic discussed	L2
3	,		Basic knowledge of any programming language	/ 5	Studied in lower semesters	L2,L3
4	,	management	Logical understanding o requirements and representing it ir programming		Developed through practice and example solving	L3
5	,		Knowledge of Transactior processing	n 5	Not yet discussed	L2

Students must have learnt the following Courses / Topics with described Content.

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
1	Object oriented database		Industrial requirement analysis	L2
		Developments		
2	Visual Paradigm ERD Tools.	Software Tools	Can be used to design ER diagrams	L3
3	SQL server certification	Certificate Courses	Can help students for placements	L2

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessme	Blooms'
ules	Code.#	At the end of the course, student	Hours		Method	nt	Level
		should be able to				Method	
1		Understand the importance of	5	Storage of	Discussi	Slip test	L2
		Database management system in		data	on		Understand
		real time.					
		Identify methodology of	5	Entity	Lecture	Q & A	L3
		conceptual modeling through		relationshi			Apply
		Entity relationship model		р			
2		Apply the relational model	-		Descripti	Assignme	L3
		concepts and operations for		Algebra	on	nt	Apply
		optimizing queries in RDBMS.					
		Apply the SQL commands for	5	Query		Employee	L3
		creating tables in database		Language	е	Problem	Apply
		schema.				set	
3		Apply the triggers and views in	5	SQL	solve	Focused	L3
		database schema.				on	Apply
						analyzing	

						/compar e	
		Analyze the access methods to store the data through internet application	5	Data connectivit y	Examine	Demonstr ate	L4 Analyze
4		Apply the normalization techniques to normalize the database using mathematical modelling	5		Demons tration	Quiz	L3 Apply
		Analyze the different types of algorithm using database design theory for different applications	5	Normalizati on	Tutorial	Analyze	L4 Analyze
5	,	Demonstrate the transaction and query processing	5		Presenta tion		L5 Evaluate
		Analyze and implement the concurrency control and database recovery protocols in database		transaction	Method / procedu re	analyze /	L5 Evaluate
-	-	Total	50	-	-	-	L2-L5

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to

Application Area	CO	Level
Compiled from Module Applications.		
Usage of database in different areas like banking , e-commerce , organization	CO1	L2
Understand and apply the concept of conceptual modelling to design a database	CO2	L3
Use relational model for optimizing queries	CO3	L3
Usage of Structured query language commands in creating database tables	CO4	L3
Creation of schema using triggers and views	CO5	L3
Accessing the database for various internet applications	CO6	L4
Using mathematical modelling techniques for normalization	CO7	L3
Understanding the normalization algorithms for database design	CO8	L4
Applying the characterizing schedules for transaction processing	CO9	L5
Understand the concurrency control techniques and database recovery protocols	CO10	L5
	Compiled from Module Applications. Jsage of database in different areas like banking , e-commerce , organization Jnderstand and apply the concept of conceptual modelling to design a database Jse relational model for optimizing queries Jsage of Structured query language commands in creating database tables Creation of schema using triggers and views Accessing the database for various internet applications Jsing mathematical modelling techniques for normalization Jnderstanding the normalization algorithms for database design Applying the characterizing schedules for transaction processing	Compiled from Module Applications.Usage of database in different areas like banking , e-commerce , organizationCO1Understand and apply the concept of conceptual modelling to design a databaseCO2Use relational model for optimizing queriesCO3Usage of Structured query language commands in creating database tablesCO4Creation of schema using triggers and viewsCO5Accessing the database for various internet applicationsCO6Using mathematical modelling techniques for normalizationCO7Understanding the normalization algorithms for database designCO8Applying the characterizing schedules for transaction processingCO9

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

N 4 I	N.4		N 4		1 .
Mod	мар	ping	Mapping	Justification for each CO-PO pair	Lev
ules			Level		el
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	L5	Knowledge of using database management is required to use it in areas	L3,L
				like banking , ecommerce etc.	5
1	CO1	PO2	L5	Understanding database systems is required to identify and analyze	L2 ,
				complex problems	L4,
					L5
1	CO1	PO3	L5	Learning of database systems is required to design and develop solution	L4 ,
				to complex problems	L5
1	CO1	PO4	L4	Investigation of complex problems of database management requires	L3 ,
				basic understanding of database systems	L4
1	CO1	PO5	L2	To develop appropriate techniques , tools , understanding of database	L2
				management system is required	
1	CO1	PO10		Applying the knowledge gained about using database in real time	L2 ,
				systems is required to communicate complex engineering activities	L3
1	CO2	PO1	L3	Knowledge of conceptual modelling through entity relationship model is	L3
				required to design database simple to complex database problems	
1	CO2	PO2	L4	Analysing problems of database requires knowledge on conceptual	L3 ,

				modelling	L4
1	CO2	PO3	L5	To design solution to database problems requires learning of entity	L4,
				relationship model	L5
1	CO2	PO4	L5	Research based knowledge required to interpret data in design of ER	L4 ,
				diagram	L5
1	CO2	PO5	L3	Knowledge of ER modelling is required in design of modern tools like SQL	L3
1	CO2	PO9	L3	To develop ER diagrams specific to different databases individual students should have knowledge of ER modelling	L3
1	CO2	PO11	L4	To solve complex database problems and develop real time projects knowledge of conceptual modelling is required	L4
2	C03	PO1	L3	Knowledge of relational model concepts is required for query optimization	L3
2	C03	PO2	L4	To analyze query optimization knowledge of relational model concept is required	L4
2	C03	PO3	L5	To design various RDBMS , understanding of relational model concept is required	L5
2	CO3	PO4	L4	Research based knowledge required to interpret data in process of optimization of queries	L4
2	CO3	PO5	L3	Knowledge of relational algebra is required in design of modern tools like SQL	L3
2	CO3		L3	To design queries specific to different databases retrievals individual students should have knowledge of relational algebra	L3
2	CO3	PO11	L5	To solve complex database problems and develop real time projects , knowledge of query optimization is required	L5
2	CO4	PO1	L3	Knowledge of basic SQL is required for creation of DB	L2,L 3
2	CO4	PO2	L4	Understanding the usage of SQL commands is required to analyze when complex tables been created	L2,L 3,L4
2	CO4	PO3	L4	Learning of basic SQL and its uswage is required to design and develop a complex database	L3, L4
2	CO4	PO5	L5	To create a DB appropriate techniques , tools are required in a database systems	L2, L3,L 4,L5
2	CO4	PO9	L3	To design queries specific to different databases retrievals individual students should have knowledge of query language	L3
2	CO4	PO11	L5	To solve complex database problems and develop real time projects , knowledge of query language is required	L5
3	CO5	PO1	L3	Knowledge of views and triggers is required to give solution to complex DB problems	L2,L 3
3	CO5	PO2	L5	Analyzing the DB schema for complex problems requires the knowledge of triggers and views	
3	CO5	PO3	L4	To design the solution for a DB problems, understanding triggers and view is required.	L3,L 4,
3	CO5	PO4	L4	Research based knowledge required to analyze the data using views and triggers	L4
3	CO5	PO9	L5	To design queries specific to different databases retrievals , individual students should have knowledge of using views and triggers	L5
3	CO5	PO11	L5	To solve complex database problems and develop real time projects , knowledge of views and triggers is required	L5
3	CO6	PO1	L4	Knowledge of access methods is required to store data through internet applications	L2, L4
3	CO6	PO2	L4	Access methods knowledge is required to analyze data storage problems.	L2, L4
3	CO6	PO3	L3	To design and develop access methods to store the data knowledge of analyzing the access methods for different applications is required	L3
3	CO6	PO4	L4	Research based knowledge is required to model the different applications which use access methods to store the data	L4
3	CO6	PO5	L2	Knowledge of data connectivity is required in design of modern tools like	L2

				SQL	
3	CO6	PO9	L3	To develop different solutions specific to different databases individual	L3
				students should have knowledge of data connectivity	
3	CO6	PO11	L4	To develop different database applications ,knowledge of data	L4
				connectivity is required	
4	CO7	PO1	L2	Knowledge of normalization is required to give accurate solution to	L2
				complex DB problems	
4	CO7	PO2	L4	Analysis of complex DB solution requires understanding of normalization	L2,
					L4
4	CO7	PO3	L4	Design the solution of DB problems requires normalization	L3,
					L4
4	CO7	PO5	L3	Knowledge of data normalization is required in design of modern tools	L3
				like SQL	<u> </u>
4	CO7	PO9	L3	To design different databases individual students should have	L3
				knowledge of data normalization	+
4	CO7	PO11	L3	To develop different database applications ,knowledge of data	L3
	000	DO (normalization is required	
4	CO8	PO1	L3	Knowledge of normalization algorithm is required in designing of DB	L2,L
	000	DOA	1.		3
4	CO8	PO2	L4	To review research solution to DB problems requires require knowledge	L2,
	<u> </u>	DOa		of normalization algorithm	L4
4	CO8	PO3	L5	Design solution to complex DB problems requires understanding of	L4,
4	C08	PO4	L2	normalization algorithm Research based knowledge is required to analyze different types of	L5
4	000	P04	L2	algorithms using database design theory	L2
4	C08	PO5		Knowledge of algorithm analysis is required to develop modern tools like	L3
4	000	PU5	L3	SQL	L3
4	CO8	PO9	L3	To design different databases individual students should have	L3
4		109	L3	knowledge of algorithm analysis	
4	C08	PO11	L4	To develop different database applications ,knowledge of algorithm	L4
4		1 011	64	analysis is required	
5	CO9	PO1	L2	Basics of transaction processing is required to demonstrate it	L2
5	CO9	PO2	 L3	To analyze transaction properties knowledge of acid properties is	L3
5	003		-5	required	
5	CO9	PO3	L4	To design and develop a database the knowledge of transaction	L4
0				processing is required	'
5	COg	PO4	L2	Research based knowledge is required to solve complex problems	L2
•				related to transaction processing	
5	CO9	PO5	L4	Knowledge of transaction processing is required to design modern tools	L4
				like SQL	
5	CO9	PO12	L2	Knowledge of transaction processing is required to use different	L2
				database applications	
5	C010	PO1	L2	In case of transaction failures knowledge of recovery techniques is	L2
				required	
5	C010	PO2	L3	To analyze the issue of transaction failure the knowledge of concurrency	L3
				control is in need	
5	C010	PO3	L5	To develop a solution for the transaction failures the knowledge of	L5
				recovery techniques is required	\vdash
5	C010	PO4	L4	To overcome the transaction failures the investigation with some	L4
	-			recovery techniques is in need	\vdash
5	CO10	PO9	L3	To recover from databases failures , individual students should have	L3
				knowledge of implementing recovery protocols	<u>↓.</u>
5	CO10	PO11	L4	To design solution to complex database problems knowledge of	L4
				analyzing and implementing concurrency control is in need	

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

Course Outcomes Program Outcomes

-

																DC	DC	1 .
Mod	CO.#	At the end of the course		· ·	PC			PO	1 U	PO	ľ	י יו	<u>ب</u>	יין ט	1' U	-	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	
1	15CS53.1	Understand the importance of	_		52.6		2.5	-	-	-	-	1	-	-				L2
		Database management system	5	5		6												Und
		in real time.																erst
					-													and
1	15CS53.2	Identify methodology of	2.5	2.5	52.6	2.5	2.5	-	-	-	2.5	-	2.5	-				L3
		conceptual modeling through	5	5		6					6		6					Арр
		Entity relationship model																ly
2	15CS53.3	Apply the relational model	2.5	2.5	5 2.6	2.5	2.5	-	-	-	2.5	-	2.5	-				L3
		concepts and operations for	5	5		6					6		6					Арр
		optimizing queries in RDBMS.																ly
2	15CS53.4	Apply the SQL commands for	2.5	2.5	52.6	- 1	2.5	-	-	-	2.5	-	2.5	-				L3
		creating tables in database	5	5							6		6					Арр
		schema.																ly
3	15CS53.5	Apply the triggers and views in	2.5	2.5	52.6	-	-	-	-	-	2.5	-	2.5	-				L3
		database schema.	5	5							6		6					Арр
																		ly
3	15CS53.6	Analyze the access methods to	2.5	2.5	52.6	2.5	2.5	-	-	-	2.5	-	2.5	-				L4
		store the data through internet	5	5		6					6		6					Ana
		application																lyze
4	15CS53.7	Apply the normalization	2.5	2.5	52.6	-	2.5	-	-	-	2.5	-	2.5	-				L3
		techniques to normalize the	5	5							6		6					Арр
		database using mathematical																ly
		modelling																
4	15CS53.8	Analyze the different types of	2.5	2.5	52.6	2.5	2.5	-	-	-	2.5	-	2.5	-				L4
		algorithm using database design		5		6					6		6					Ana
		theory for different applications	-	-														lyze
5	15CS53.9	Demonstrate the transaction and	2.5	2.5	52.6	2.5	2.5	-	-	-	-	-	-	2				L5
Ŭ	0 0000	query processing	5	5		6												Eval
																		uat
																		е
5	15CS53.10	Analyze and implement the	2.5	2.4	52.6	2.5	-	-	-	-	2.5	-	2.5	-				L5
	0 000	concurrency control and	5	5		6					6		6					Eval
		database recovery protocols in				-							-					uat
		database																e
-	17CS53	Average attainment (1, 2, or 3)	2.5	2.4	2.6	2.5	2.5	-	-	-	2.5	1	2.5	2	-	-	-	-
	_, 33		5	5		6					6	_	6	-				
_	PO, PSO	1.Engineering Knowledge; 2.Prob	lem		nalı	-	3.1	ı Des	ian	/	Dei	vela	-	ient	of	S	olut	ions'
	,,	4.Conduct Investigations of Compl																
		Society; 7.Environment and Si																
		10.Communication; 11.Project N																
		S1.Software Engineering; S2.Data E													'ng	_	Jui	
L		proof ware Engineering, 52.Data L	545		and	1901	101	<i>,</i> U	۷۷ ، د.	CD	203	ign						

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
	Usage of Data Intensive application in real time	Classroom discussion	1/8/19	Mrs.Veena M. Naik	PO1,PO2,PO5, PO11,PO12
	Analyzing Data, Data storage and data access requirement of any organization	discussion	27/8/19	Mrs.Veena M. Naik	P01,P02,P05, P011,P012

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

17CS53/A

Mod ules	· · ·	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping
		Fatropropo	Classroom			
		Entreprene	Classroom	0	Mrs.Veena M.	PO1,PO2,PO5,P
	Intensive application	urship	discussion		Naik	O11,PO12
	in real time					
2	Analyzing Data, Data	Higher	Classroom	27/8/19	Mrs.Veena M.	PO1,PO2,PO5,P
	storage and data		discussion		Naik	O11,PO12
	access requirement					
	of any organization					

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.							CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Introduction to database	10	2	-	-	1	1	2	CO1, CO2	L2, L3
2	Relational model	10	2	-	-	1	1	2	CO3, CO4	L3, L3
3	SQL	10	-	2	-	1	1	2	CO5, CO6	L3, L4
4	Normalization	10	-	2	-	1	1	2	CO7, C08	L3, L4
5	Transaction processing	10	-	-	4	1	1	2	CO9, CO10	L5, L5
-	Total	50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod		Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1, CO2, CO3, CO4	L2, l3, l3, l3
3, 4	CIA Exam – 2	30	CO5, CO6, CO7, C08	L3, L4, L3, L4
5	CIA Exam – 3	30	CO9, CO10	L5, L5
	Assignment - 1	10	CO1, CO2, CO3, CO4	L2, l3, l3, l3
	Assignment - 2	10	CO5, CO6, CO7, CO8	L3, L4, L3, L4
5	Assignment - 3	10	CO9, CO10	L5, L5
1, 2	Seminar - 1	00	-	-
3, 4	Seminar - 2	00	-	-
5	Seminar - 3	00		
1 - 5	Other Activities – Mini Project	-	_	-
	Final CIA Marks	40	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction to database	Appr	10 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand the importance of Database management system in real time.	CO1	L2
2	Identify methodology of conceptual modeling through Entity relationship model	CO2	L3

b	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
1	Introduction to Databases: Introduction,	C01	L2
2	Characteristics of database approach	C01	L2
3	Advantages of using the DBMS approach	C01	L2
4	History of database applications	C01	L2
5	Overview of Database Languages and Architectures: Data Models, Schemas, and Instances.	C01	L2
6	Three schema architecture and data independence, database languages, and interfaces	C01	L2
7	The Database System environment.	CO2	L3
8	Conceptual Data Modelling using Entities and Relationships: Entity types, Entity sets, attributes, roles, and structural constraints, Weak entity types	CO2	L2
9	,E R diagram	CO2	L3
10	examples, Specialization and Generalization.	CO2	L2
с	Application Areas	со	Level
1	Usage of database in different areas like banking, e-commerce, organization	CO1	L2
2	Understand and apply the concept of conceptual modelling to design a database	CO2	L3
d	Review Questions	_	_
1	What is the difference between a database schema and a database state?	CO1	L2
2	What is the difference between logical data independence and physical data independence? Which one is harder to achieve and why?	CO1	L2
3	What is the role of precompiler in a DBMS environment?	CO1	L2
4	What is the difference between two tier and three tier client/server architectures?	CO1	L2
5	What do you understand by "degree of a relationship type"? Explain with example.	CO2	L3
6 L	Under what conditions can an attribute of a binary relationship type be migrated to become an attribute of the participating entity types?	CO2	L3
7	Discuss the naming conventions used for ER schema diagrams.	CO2	L3
е	Experiences	-	
1	Experiences	-	_
2			
3			
4			
5			

Module – 2

Title:	Relational model	Appr	10 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Apply the relational model concepts and operations for optimizing queries in RDBMS.	CO3	L3
2	Apply the SQL commands for creating tables in database schema.	CO4	L3
b	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
1	Relational Model Concepts, Relational Model Constraints and relational database schemas, Update operations, transactions, and dealing with constraint violations.	CO3	L3
2	Relational Algebra: Unary and Binary relational operations,	CO3	L3

3	additional relational operations (aggregate, grouping, etc.)	CO3	L3
4	Examples of Queries in relational algebra. Mapping Conceptual Design	CO3	 L3
-	into a Logical Design	005	
5	Relational Database Design using ER-to-Relational mapping.	CO3	L3
6	SQL: SQL data definition and data types	CO4	L2
7	specifying constraints in SQL,	CO4	L3
8	Additional features of SQL.	CO4	L3
9	retrieval queries in SQL	CO4	L3
10	INSERT, DELETE, and UPDATE statements in SQL, Additional features of	CO4	L3
	SQL.		
С	Application Areas	СО	Level
1	Use relational model for optimizing queries	CO3	L3
2	Usage of Structured query language commands in creating database	CO4	L3
	tables		
d	Review Questions	-	-
12	Why are duplicate tuples not allowed in a relation?	CO3	L3
13	What is the difference between candidate key, primary key and unique key?	CO3	L3
14	Discuss the various reasons that lead to the occurrence of NULL values in relations?	CO3	L3
15	What are the rules that must be satisfied by the foreign key?	CO4	L3
е	Experiences	_	_
	Experiences	_	
-			
1			
1 2			
1			

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs C	Code:	17CS53	Sem:	5	Marks:	30	Time: 7	75 minute	S	
Cour	se:	Database I	Manageme	nt System						
-	-	Note: Ansy	wer any 2 c	questions, e	each carry e	qual mar	ks. Module : 1, 2	Marks	со	Level
1	а	Describe t	he three sc	hema archi	tecture with	neat dia	gram.	7	CO1	L2
	b	Explain the	e main phas	ses of datak	base design	with a ne	at diagram.	8	CO2	L3
					OR					
2		requireme a. Each mo minutes ar b. Product productior c. Actors a movies an d. Director one or mo directors.	nts pvie is iden nd can have ion compan n company are identifie d each actor s are ident pre movies	tified by its e zero or me nies are ide can produce ed by name or has a role tified by na and each	tittle and ye ore quotes,la entified by r ce one or mo e and dob,t e in movie me and dob movie can	ar of rele anguages name and ore movie hey can o,so each oe direct	d address and ead	in ch re ct	CO2	L3
	b	Discuss va	rious comp	onents of [DBMS and th	eir intera	ctions with diagram	m. 7	CO1	L2
3							example for each.	7	CO3	L2
	b	Explain alt	er commar	nd and its o	ptions with a	n examp	le.	8	CO4	L3
					OR					
4	а	Explain sel	lect and pro	oject opera	tion in relatio	onal algel	bra with example	5	CO3	L2

b	Consider the following schema for a Library Database:	10	CO4	L3
	BOOK(Book_id, Title, Publisher_Name, Pub_Year)			
	BOOK_AUTHORS(Book_id, Author_Name)			
	PUBLISHER(Name, Address, Phone)			
	BOOK_COPIES(Book_id, Branch_id, No-of_Copies)			
	BOOK_LENDING(Book_id, Branch_id, Card_No, Date_Out,			
	Due_Date)			
	LIBRARY_BRANCH(Branch_id, Branch_Name, Address)			
	Write SQL queries to			
	1. Retrieve details of all books in the library – id, title, name of publisher,			
	authors, number of copies in each branch, etc.			
	2. Get the particulars of borrowers who have borrowed more than 3			
	books, but from Jan 2017 to Jun 2017.			
	3. Delete a book in BOOK table. Update the contents of other tables to			
	reflect this data manipulation operation.			
	4. Partition the BOOK table based on year of publication. Demonstrate its			
	working with a simple query.			
	5. Create a view of all books and its number of copies that are currently			
	available in the Library.			
	available in the Library.			

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

	71 015			V	l Assignme		ons			
Crs C	ode:	17CS53	Sem:	5	Marks:	10		90 - 120	minute	S
Cours			e Manageme			Modul				
Note:	Each					ssignmen	t carries equal ma	ark.		
SNo		USN		Assi	gnment De	scription		Marks	СО	Level
1			<i>database sta</i> schema, da language, h	following t ate, internal Ita indeper ost languag Int/server c	erms: <i>data</i> schema, c ndence,DD ge, data su	<i>model,</i> onceptua L, DML, blanguag	database schema Il schema, externa SDL, VDL, quer e, database utility r architecture, an	al Y 1,	CO1	L2
2			Draw an EF	diagram f			e schema with a key and structura		CO2	L3
3			What is a we design of we			n the role	of partial key in		CO2	L3
4			Explain the t neat diagrar		ponents m	odule of	a DBMS, with a	5	CO1	L2
5			Discuss the how it differs				ase approach an	d 5	CO1	L2
6				e three sch	nema archi		Why do we nee	d 5	CO1	L2
7							different types of with example	of 5	CO2	L3
8			In SQL whic	ch commar aints are s	nd is used	for table	creation? Explai ing table creatio		CO4	L3
9					lgebra ope	rations fro	om set theory wit	h 5	CO3	L3
10			resort city, n SUITE(suit r RESERVATI(check out, to VISITOR(visi	sort no, re umsuite) no, resort no DN(reserval otoal visitor tor no, firstr	esort name o, suite price tion no, res s, suite no) name, lastna	e, resort e) sort no, v ame, visit	type, resort add isitor no, check ir er addr) the resorts on lo	١,	C04	L3

2) write the sql list full details of all the resorts having number	
of suits more than 30)	
3) write the sql to list visitor in ascending order by firstname.	

D2. TEACHING PLAN - 2

Module – 3

Title:	SQL	Appr Time:	10 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Apply the triggers and views in database schema.	CO5	L3
2	Analyze the access methods to store the data through internet application	CO6	L4
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	More complex SQL retrieval queries,	CO5	L3
2	Specifying constraints as assertions and action triggers	CO5	L3
3	Views in SQL	CO5	L3
4	Schema change statements in SQL.	CO5	L4
5	Schema change statements in SQL Continued	CO5	L4
6	Database Application Development:Accessing databases from applications	CO6	L4
7	An introduction to JDBC, JDBC classes ,Interfaces	CO6	L4
8	SQLJ, Stored procedures	CO6	L4
9	Case study: The internet Bookshop.	CO6	L4
10	Internet Applications: The three-Tier application architecture, The presentation layer, the middle tier	CO6	L4
	Application Areas		Laval
C	Application Areas	CO	Level
1	Creation of schema using triggers and views	CO5 CO6	L3
2	Accessing the database for various Internet applications	000	L4
d	Review Questions	-	-
1	Describe the six clauses in the syntax of an SQL retrieval query. Show what type of constructs can be specified in each of the six clauses. Which of the six clauses are required and which are optional?	CO5	L3
2	Discuss how each of the following constructs is used in SQL, and discuss the various options for each construct. Specify what each construct is useful for. a. Nested queries. b. Joined tables and outer joins. c. Aggregate functions and grouping. d. Triggers. e. Assertions and how they differ from triggers. f. Views and their updatability. g. Schema change commands.	CO5	L3
3	Describe conceptually how an SQL retrival query will be executed by specifying the conceptual order of executing each of the six clauses	CO5	L3
4	What are the basic data types available for the attributes in SQL?	CO5	L3
5	Explain the three tier application architecture?	C06	L4
е	Experiences	_	_
1			
2			
3			

4		
5		

Module – 4

Title:	Normalization	Appr Time:	10Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Apply the normalization techniques to normalize the database using mathematical modelling	CO7	L3
2	Analyze the different types of algorithm using database design theory for different applications	CO8	L4
b	Course Schedule		
	Module Content Covered	СО	Level
1	Normalization: Database Design Theory – Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema	CO7	L3
2	Functional Dependencies, Normal Forms based on Primary Keys	CO7	L3
3	Second and Third Normal Forms	CO7	L3
4	Boyce-Codd Normal Form, Multivalued	C07	 L3
5	Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form.	CO7	L3
6	Normalization Algorithms: Inference Rules, Equivalence, and Minimal Cover, Properties of Relational Decompositions		L4
7	Algorithms for Relational Database Schema Design,	CO8	L4
8	Nulls, Dangling tuples, and alternate Relational Designs,	CO8	L4
9	Further discussion of Multivalued dependencies and 4NF	CO8	L4
10	, Other dependencies and Normal Forms	CO8	L4
с	Application Areas	со	Level
1	Using mathematical modelling techniques for normalization	CO8	L3
2	Understanding the normalization algorithms for database design	CO7	L4
d	Review Questions	-	-
1	What is a functional dependency? What are the possible sources of the information that defines the functional dependencies that hold among the attributes of a relation schema?	CO7	L3
2	What undesirable dependencies are avoided when a relation is in 3NF?	CO7	L3
3	Why should NULL s in a relation be avoided as much as possible? Discuss the problem of spurious tuples and how we may prevent it.	CO8	L4
4	What is meant by the attribute preservation condition on a decomposition?	CO8	L4
5	Discuss the NULL value and dangling tuple problems.	CO8	L4
е	Experiences	-	-
1			
2			
3			
4			
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs (Code:	17CS53	Sem:	5	Marks:	30	Time:	75	minute	s	
Cour	rse:	Database N	lanagemen	t System							
-	-	Note: Answ	er any 2 qu	estions, eac	h carry equ:	al marks. M	odule : 3, 4		Marks	CO	Level

1	а	How are triggers and assertions defined in SQL? Explain with example	7	CO5	L3
	b	Explain the three tier application architecture?	8	CO6	L3
		OR			
2	а	Explain how the GROUP BY clause works with an example. What is the	7	CO5	L3
		difference between WHERE and HAVING clause.			
	b	Explain the single tier and client-server architecture with neat diagram	8	CO6	L2
3	а	Define 1NF , 2NF, 3NF with suitable example for each.	8	CO7	L3
	b	Define Minimal Cover .Write an algorithm for finding a minimal cover for a	7	CO8	L2
		set of functional dependencies .			
		OR			
4	а	Explain insertion , deletion and modification anomalies. Illustrate with	8	CO7	L2
		example.			
	b	Define non-additive joint property of a decomposition and write an	7	CO8	L2
		algorithm of testing for non-additive joint property			

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

				l Assignme						
Crs C	17CS53	Sem:	5	Marks:	10	Time:	9	0 - 120	minute	S
Cours		e Manageme			Modul					
		to answer 2-3					al ma			
SNo	JSN			gnment De				Marks	со	Level
1		Discuss how and discuss t 1) Nested qua 2) Aggregate 3) Triggers 4) Views and 5) Schema ch 6) Group by a	he various eries functions their upda nange stat	s options for atability ements			n SQL	- 5	CO5	L3
2		Draw and e relevant to architecture	explain thi each tier.	ree tier ar write the	advanta	ages of thre	e tier	r	CO6	L4
3		What is CG disadvantage					e the	2 5	CO6	L4
4		Define non-a write an algo						5	CO8	L4
5		Discuss inse are they cons	sidered ba				s. Why	/ 5	CO6	L4
6		Define an CC database and CREATE VIEV FROM GROU DEPT_SUMM Dno , COUNT EMPLOYEE I State which allowed on t show what t relations wou the database a. SELECT FF DEPT_SUMM b. SELECT FF DEPT_SUMM c. SELECT FF WHERE D , AVERAGE_S	d Consider WAS SELE P BY IARY (D , ((*), SUM Ono ; of the foll he view. If he corres uld look lif com * IARY ; ROM WHE IARY TOT/ ROM	CT (Salary), A lowing que f a query of ponding qu ke, and giv RE D , C AL_S > 1000	Average. VG (Sala ries and r update lery or u e its resu	_s) ry) updates wou would be all odate on the	uld be owed e base	2	CO5	L3

	C > (SELECT C FROM DEPT_SUMMARY WHERE D =4); d. UPDATE SET WHERE DEPT_SUMMARY D =3 D =4; e. DELETE WHERE FROM DEPT_SUMMARY C > 4;			
7	Define first, second, and third normal forms when only primary keys are considered. How do the general definitions of 2NF and 3NF, which consider all keys of a relation, differ from those that consider only primary keys?	-	CO7	L3
8	Define Boyce-Codd normal form. How does it differ from 3NF? Why is it considered a stronger form of 3NF?	5	CO7	L3
9	What is the dependency preservation property for a decomposition? Why is it important?	5	CO8	L4
10	Consider the universal relation R = {A, B, C, D, E, F, G, H, I, J} and the set of functional dependencies F = { {A, B}→{C}, {A}→{D, E}, {B}→{F}, {F}→{G,H}, {D}→{I, J} }. What is the key for R? Decompose R into 2NF and then 3NF relations.	-	C07	L3

D3. TEACHING PLAN - 3

Module – 5

Title:	Agile Software Development,Agile Methods	Appr Time:	10 Hrs		
a	Course Outcomes	-	Blooms		
-	The student should be able to:	-	Level		
1	Demonstrate the transaction and query processing	CO9	L2		
2	Analyze and implement the concurrency control and database recovery protocols in database	CO10	L2		
b	Course Schedule				
Class No	Module Content Covered	CO	Level		
1	Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions,	CO9	L2		
2					
3					
4	Concurrency control based on Timestamp ordering,	CO9	L2		
5	Multiversion Concurrency control techniques,	CO9	L2		
6	Validation Concurrency control techniques	CO10	L2		
7	Granularity of Data items and Multiple Granularity Locking. Introduction to Database Recovery Protocols: Recovery Concepts	CO10	L2		
8	NO-UNDO/REDO recovery based on Deferred update	CO10	L2		
9	Recovery techniques based on immediate update	CO10	L2		
10	Shadow paging, Database backup and recovery from catastrophic failures				
С	Application Areas	со	Level		
1	Applying the characterizing schedules for transaction processing	CO10	L5		
2	Understand the concurrency control techniques and database recovery protocols	CO9	L5		
d	Review Questions	-	_		
1	Draw a state diagram and discuss the typical states that a transaction goes through during execution.		L5		
2	Discuss the atomicity, durability, isolation, and consistency preservation properties of a database transaction.	CO9	L5		

3	Describe the four levels of isolation in SQL.	CO9	L5
4	What is a timestamp?	CO10	L5
5	What are UNDO -type log entries?	CO10	L5
6	What are REDO -type log entries?	CO10	L5
7	How does the system generate timestamps?	CO10	L5
8	Explain Shadow Paging	CO10	L5
е	Experiences	-	-
1			
2			
3			
4			
5			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs (Code:	17cs53 Sem: 5 Marks: 30 Time: 75 n	ninute	S	
Cour	rse:	Database Management System			
-	-	Note: Answer any 2 questions, each carry equal marks. Module : 5	Marks	СО	Level
1		Draw a state diagram and discuss the typical states that a transaction goes through during execution.	8	CO9	L5
	b	What are UNDO -type and REDO -type log entries?	7	CO10	L5
		OR			
2	а	Discuss ACID properties of a database transaction	7	CO9	L5
	b	Describe the wait-die and wound-wait protocols for deadlock prevention.	8	CO10	L5
3		Discuss the actions taken by the read_item and write_item operations on a database.	8	CO9	L5
	b	Describe the shadow paging recovery technique. Under what circumstances does it not require a log?	7	CO10	L5
		OR			
4	а	Explain transaction support in SQL	8	CO9	L5
		What is meant by transaction rollback? What is meant by cascading rollback?	7	CO10	L5

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

				Moo	del Assignmer	nt Questi	ons			
Crs C	rs Code: 17cs53 Sem: 5 Marks: 10 Time: 9							90 – 120 minutes		
Cours	se:	Databas	e Manageme	nt Syste	m	Modul	e:5			
Note:	Each	student	to answer 2-3	assignn	nents. Each as	signmen	it carries equal ma	ark.		
SNo	l l	USN		As	signment Des	scription		Marks	СО	Level
1			Discuss ACID	propert	ies of a databa	ase trans	action	5	CO9	L5
2			Explain transa	action su	Ipport in SQL			5	CO9	L5
			Discuss the actions taken by the read_item and write_item operations on a database.						CO9	L5
4			What is a recoverable, them in term		CO9	L5				
5			What is the guarantee se		0	protoc	ol? How does	it 5	CO9	L5
6			Describe the wait-die and wound-wait protocols for deadlock prevention.						CO10	L5
7							l for concurrenc g differ from basi		CO9	L5

	timestamp ordering?			
8	Discuss the UNDO and REDO operations and the recovery techniques that use each.	5	CO10	L5
9	Describe the shadow paging recovery technique. Under what circumstances does it not require a log?	5	CO10	L5
10	What do the terms steal/no-steal and force/no-force mean with regard to buffer management for transaction processing?		CO10	L5

F. EXAM PREPARATION

1. University Model Question Paper

Cou	rse:	Database Management System Month	n / Year	May /	2019
		17CS53 Sem: V Marks: 100 Time:		180 m	
	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	CO	Level
dul					
e		Evelois the two is all as we are the search is a DDMC with a weat discussed		001	
1	a b	Explain the typical components module of a DBMS, with a neat diagram		CO1 CO2	L2
	a l	Draw an ER diagram for a BANK database schema with at least five entit types. Also specify primary key and structural constraints.	y 10	02	L3
		OR			
	а	Describe the three schema architecture . Why do we need mapping	as 10	CO1	L2
	u	among schema levels?	JS 10	001	
	b	Define an entity or attribute . Explain the different types of attributes th	at 10	CO2	L2
		occur in a ER diagram model with example			
2	a	Consider the following relations for a database that keeps track student enrollment in courses and the books adopted for each course: STUDENT (<u>Ssn</u> ,Name,Major,Bdate) COURSES(<u>Course#</u> ,Cname,Dept) ENROLL(<u>Ssn,Course#</u> , <u>Quarter</u> , Grade) BOOK_ADOPTION(<u>Course#,Querter</u> ,Book_isbn) TEXT(<u>Book_isbn</u> ,Book_title,Publisher,Author) .create the above tables by properly specifying the primary keys And the foreign key. Ii. Enter atleast five tuples for each relation. Iii. Demonstrate how you add a new text book to the database and Make this book be adopted by some department. Iv. Produce a list of text books(include course #,book_isbn,book- Title) in the alphabetical order for courses offered by the cs Department that use more than 2 books. V. List any department that has all its adopted books published by Specific publisher.	of 10	Co3	L3
	b	In SQL which command is used for table creation? Explain ho constraints are specified in SQL during table creation with suitab example.		CO4	L3
		OR			
-	а	What is the difference between candidate key, primary key and uniqukey?		CO3	L2
	b	Explain how constraints are specified in SQL during table creation wi suitable examples.	th 10	CO4	L3
3	a	Discuss how each of the following constructs is used in SQL, and discus the various options for each construct. Specify what each construct useful for. a. Nested queries. b. Joined tables and outer joins. c. Aggregate functions and grouping. d. Triggers.		CO5	L2

		e. Assertions and how they differ from triggers.			
		f. Views and their updatability.			
		g. Schema change commands.			
	b	What is CGI? Why was CGI introduced? What are the disadvantages of an architecture using CGI scripts?	10	CO6	L2
		OR			
_	а	Specify the following views in SQL on the COMPANY database schema	10	CO5	L3
	u	a) A view that has the department name, manager name, and manager salary for every department.	10	000	-5
		b) A view that has the employee name, supervisor name, and employee			
		salary for each employee who works in the 'Research' department.			
		c) A view that has the project name, controlling department name, number			
		of employees, and total hours worked per week on the project for each project.			
		d) A view that has the project name, controlling department name, number			
		of employees, and total hours worked per week on the project for each			
	С	project with more than one employee working on it. Discuss insertion, deletion and modification anamolies. Why are they	10	CO6	L3
	•	considered bad? Illustrate with examples.	20		
4	а	Define Boyce-Codd normal form. How does it differ from 3NF? Why is it	10	CO7	L2
	ч	considered a stronger form of 3NF?	10	007	
	С	Define non-additive joint property of a decomposition and write an	10	C08	L2
	•	algorithm of testing for non-additive joint property			
		OR			
-	а	What is meant by the attribute preservation condition on a	10	CO7	L2
		decomposition ? Why should NULL s in a relation be avoided as much as			
		possible?			
	b	Discuss the problem of spurious tuples and how we may prevent it.	10	CO8	L2
5	а	Draw a state diagram and discuss the typical states that a transaction	10	CO9	L2
		goes through during execution.	-		_
	b	Describe the shadow paging recovery technique. Under what	10	CO10	L2
		circumstances does it not require a log?	20	0010	
		OR			
	а	What is the two-phase locking protocol? How does it guarantee	8	CO9	L2
	2	serializability?	2	200	
	b	What do the terms steal/no-steal and force/no-force mean with regard	12	C010	L2
		to buffer management for transaction processing?			

2. SEE Important Questions

Course:		Database Management System Month	/ Year	May /	2019
Crs (Code:	17CS53 Sem: 5 Marks: 100 Time:		180 mi	inutes
	Note	Answer all FIVE full questions. All questions carry equal marks.	-	-	
Mo dul e	Qno.	Important Question	Marks	со	Year
1	1	Explain the typical components of a DBMS with a neat diagram.	8	CO1	2018
		Discuss the main Characteristics of the database approach. How does i differ from Traditional file systems?	4	CO1	2018
		Explain the three-schema architecture. What is the logical data independence and physical data independence?	4	CO1	2018
		Design an ER diagram for an insurance company. Assume suitable entity types like CUSTOMER,AGENT,BRANCH,POLICY,PAYMENT and the relation between them.		CO2	2015

$ \rightarrow $	5	What are weak entity type? Explain the role of partial key in design of weak entity type?	5	CO2	2015
2	1	Discuss entity integrity and referential integrity constraint. Explain the importance of each of them	5	CO3	2015
	2	Discuss various types f join operations. Why is Theta join required.	5	CO3	2015
	3	Given the schema EMP (Fname, Lname, SSN, Bdate, Address, Sex, Salary, SuperSSN, Dno) DEP T(Dname, Dnumber, MgrSSN, MGrstartdate) DEPT-LOC (Dnumber, Dloc) PROJECT(Pname, Pnumber, Ploc,Dnum) WORKS-ON (ESSN,Pno,Hours) DEPENDENT(ESSN,Dep_name,Sex) Write the relational algebra query for the following. i)Retrieve the name of employee who works in the same department as that of "Ravi" ii)Retrieve the number of dependents for an employee named "Ravi"	10	CO4	2017
		iii)Retrieve the name of managers working in location "DELHI" who has no female dependents.			
	4	Write a note on NULL and three valued logic	10	CO4	2014
	5	Consider the following RESORT database RESORT (resort no, resort name, resort type, resort addr, resort city, numsuite) SUITE(suit no, resort no, suite price) RESERVATION(reservation no, resort no, visitor no, check in, check out, totoal visitors, suite no) VISITOR(visitor no, firstname, lastname, visiter addr) 1) write the sql to list full details of all the resorts on los angeles 2) write the sql list full details of all the resorts having number of suits more than 30) 3) write the sql to list visitor in ascending order by firstname.	6	CO4	2018
3	1	Explain insert, delete and update statements in SQL with example.	9	CO5	2014
	2	Explain the following i)Embedded SQL ii)Stored Procedure	8	CO5	2015
	3	With program segment, explain retrieving of tuples with embedded SQL in C.	6	CO5	2019
	4	Differentiate i)Triggers and assertions ii)Embedded and Dynamic SQL iii)Outer join and Self join iv)Super key and Candidate key	8	CO5	2016
	5	What is CGI? Why was CGI introduced? What are the disadvantages of an architecture using CGI scripts?	4	CO6	2018
4	1	What do you mean by multivalued dependency. Explain the 4NF with example.	6	CO7	2016
	2	Explain the concept of BCNF	6	CO7	2018
	3	Discuss insertion, deletion, and modification anomalies. Why they are bad? Illustrate with example?	4	CO7	2018
	4	Define non-additive join property of a decomposition and write an algorithm f testing for non-additive join property.	4	CO8	2018
		What do you mean by closure of an attribute?Write an algorithm to find	6	CO8	2019
	5	closure of an attribute.			
				<u> </u>	2016
5	5 1 2	closure of an attribute. Explain transaction support in SQL What is Serializibility?How can seriaizability be ensured?Justify your answer?	6	CO9 CO9	2016 2018

|--|

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

Мо							Assessment
dul	(Split module content into 2 parts which have	Teachin	Learning			on	Methods to
e-	similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure
#		-	for	Leve	Learning	for	Learning
			Content			Learning	J
A	В	С	D	Ε	F	G	Н
	Introduction to Databases: Introduction,	5	L2		, Understa		Slip test
1		5	LZ				Supresi
	Characteristics of database approach,				nd	on	
	Advantages of using the DBMS approach,						
	History of database applications. Overview of						
	Database Languages and Architectures: Data						
	Models, Schemas and Instances. Three						
	schema architecture and data independence,						
	database languages, and interfaces, The						
	Database System environment.						
1	Conceptual Data Modelling using Entities and	5	L2	L2	Identify	Lecture	Q&A
	Relationships: Entity types, Entity sets,	5	<u> </u>		i deritin y		Gun
	attributes, roles, and structural constraints,						
	Weak entity types, ER diagrams, examples,						
	Specialization and Generalization.						
	Relational Model: Relational Model Concepts,	5	L2	L3	Apply	Descripti	Assignment
	Relational Model Constraints and relational					on	
	database schemas, Update operations,						
	transactions, and dealing with constraint						
	violations. Relational Algebra: Unary and						
	Binary relational operations, additional						
	relational operations (aggregate, grouping,						
	etc.) Examples of Queries in relational						
	algebra. Mapping Conceptual Design into a						
	Logical Design: Relational Database Design						
	using ER-to-Relational mapping	_			A ia ia la i	Davalar	Freedowaa
2	SQL:SQL data definition and data types,	5	L2,L3	L3	Apply	Develop	
	specifying constraints in SQL, retrieval					е	Problem set
	queries in SQL, INSERT, DELETE, and						
	UPDATE statements in SQL, Additional						
	features of SQL.						
3	SQL:Advances Queries: More complex SQL	5	L3	L3	Apply	solve	Focused on
	retrieval queries, Specifying constraints as						analyzing /
	assertions and action triggers, Views in SQL,						compare
	Schema change statements in SQL. Database						'
	Application Development: Accessing						
	databases from applications,						
2	An introduction to JDBC, JDBC classes and	F	L2	L2	Analyze	Evamino	Demonstrat
-		5	LZ		Anatyze		
	interfaces, SQLJ, Stored procedures, Case						е
	study: The internet Bookshop. Internet						
	Applications:The three-Tier application						
	architecture, The presentation layer, The						
	Middle Tier						
4	Database Design Theory – Introduction to	5	L2	L3	Apply	Demons	Quiz
	Normalization using Functional and				-	tration	
	Multivalued Dependencies: Informal design						
	guidelines for relation schema, Functional						
L		1	I		1	1	I

	Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms,Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form,Join Dependencies and Fifth Normal Form						
	Normalization Algorithms: Inference Rules, Equivalence, and Minimal Cover, Properties of Relational Decompositions, Algorithms for Relational Database Schema Design, Nulls, Dangling tuples, and alternate Relational Designs, Further discussion of Multivalued dependencies and 4NF, Other dependencies and Normal Forms	5	L2,L3		Analyze	Tutorial	Analyze
5	Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.	5	L2	L3	Demonst rate	Presenta tion	Seminar
5	Concurrency Control in Databases: Two- phase locking techniques for Concurrency control, Concurrency control based on Timestamp ordering, Multiversion Concurrency control techniques, Validation Concurrency control techniques, Granularity of Data items and Multiple Granularity Locking. Introduction to Database Recovery Protocols: Recovery Concepts, NO-UNDO/REDO recovery based on Deferred update, Recovery techniques based on immediate update, Shadow paging, Database backup and recovery from catastrophic failure.	5	L3,L4	L4	,	Method/ procedu re	Student analyze / focuses

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Mc		Identified	Final	Concept	CO Components	Course Outcome
du		Concepts	Concept	Justification	(1.Action Verb,	
e-	from study of			(What all Learning	2.Knowledge,	
#	the Content	Content		Happened from the		Student Should be
	or Syllabus			study of Content /	Methodology,	able to
				Syllabus. A short	4.Benchmark)	
				word for learning or		
			14	outcome)		
A	1	J	K	L	M	N
1	Characteristic		Real-time	importance of	Understand ,	Understand the
	s of database	data	usage of	Database	importance of	importance of
	approach,		database	management	Database	Database
	Advantages			system	management	management
	of using the				system , real time.	system in real time.
	DBMS					
	approach					
1	Data Models,	Entity		Entity relationship	Identify ,methodolo	Identify
	Schemas and	relationship	l modeling	model	gy of conceptual	methodology of
	Instances.				modeling ,Entity	conceptual
	Three				relationship model	modeling through
	schema					Entity relationship
	architecture					model
	and data					

2	independenc e, database languages, and interfaces Relational	Relational	Implement	Relational model	Apply ,the relational	Apply the relational
		Algebra		concepts	model concepts and operations ,	model concepts and operations for optimizing queries in RDBMS.
	SQL data	Structured	Database		Apply, the SQL	Apply the SQL
	definition and data types, specifying constraints in SQL, retrieval queries in SQL, INSERT, DELETE, and UPDATE statements in SQL	language	schema design	design	commands , creating tables in database schema.	commands for creating tables in database schema.
	Specifying constraints as assertions and action triggers, Views in SQL, Schema change statements in SQL	SQL	Schema change statement using SQL		Apply, the triggers and views , database schema.	Apply the triggers and views in database schema.
3	JDBC classes and interfaces, SQLJ, Stored procedures, Case study	Data connectivity		Database application	Analyze ,the access methods to store the data , internet application	Analyze the access methods to store the data through internet application
	Normalization using Functional and Multivalued Dependencie s: Informal design guidelines for relation	design	Mathemati cal Modeling	Database design	Apply, the normalization techniques , using mathematical modeling	Apply the normalization techniques to normalize the database using mathematical modelling

	I			1	1	
	schema,					
	Functional					
	Dependencie					
	s,Normal					
	forms					
4	Inference	Normalizatio	Different	database design	Analyze ,the	Analyze the
	Rules,	n	types of			different types of
	Equivalence,		normalizati		algorithm, database	
	and Minimal		on			database design
	Cover,					theory for different
	Properties of					applications
	Relational					applications
	Decompositio					
	ns,					
	Algorithms					
	for Relational					
	Database					
	Schema					
	Design, Nulls,					
	Dangling					
	tuples, and					
	alternate					
	Relational					
	Designs					
5		Transaction	Transactio	Transaction support	Demonstrate,	Demonstrate the
	and System	processing				transaction and
	concepts,		processing		query processing	query processing
	Desirable					
	properties of					
	Transactions,					
	Characterizin					
	g schedules					
	based on					
	recoverability					
	,Serializability					
-		Data	Concernation	Databaca racarra		Analyza and
5		Data		Database recovery	-	Analyze and
	U U		cy control			implement the
			and			concurrency control
		_ · · · ,	database			and database
	,	methods	recovery			recovery protocols
	control,		protocols		database	in database
	Concurrency					
	control based					
	on					
	Timestamp					
	ordering,					
	Multiversion					
	Concurrency					
	control					
	techniques,					
	Database					
	recovery					
	methods					
1	n ieu ious					